a2 United States Patent
Reed et al.

US009466037B2

US 9,466,037 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) VERSIONING AND EFFECTIVITY DATES
FOR ORCHESTRATION BUSINESS
PROCESS DESIGN

(75) Inventors: Lynn Leah Reed, Newburyport, MA

(US); Muhammad Zeeshan Butt,
Foster City, CA (US); Shrikant Nene,
Fairfield, CT (US); Alok Singh,
Fremont, CA (US); Krishna Raju
Venkata Addala, Westford, MA (US)

(73) ORACLE INTERNATIONAL

CORPORATION, Redwood Shores,

CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 401 days.

@
(22)

Appl. No.: 12/617,697

Filed: Nov. 12, 2009

(65) Prior Publication Data

US 2010/0122258 Al May 13, 2010

Related U.S. Application Data

Provisional application No. 61/114,276, filed on Nov.
13, 2008.

(60)

Int. CL.
G06Q 10/06
GO6F 9/44
G06Q 10/10
G06Q 30/04
G06Q 30/06
U.S. CL
CPC

(51)
(2012.01)
(2006.01)
(2012.01)
(2012.01)
(2012.01)
(52)
G06Q 10/063 (2013.01); GOGF 8/71
(2013.01); GO6Q 10/06 (2013.01); GO6Q
107103 (2013.01); GO6Q 30/04 (2013.01);

G06Q 30/06 (2013.01)

ceive a command to sxecute
an executable process

04 usiness procass

Determine the correot version of
the busi

Determine metadata for the

(58) Field of Classification Search
CPC .. GO6Q 10/06; GO06Q 10/063; GO6Q 10/103;
GOG6F 8/71
USPC 705/1.1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,872,973 A * 2/1999 Mitchell et al. 719/332

6,574,609 Bl * 6/2003 Downs et al. 705/50

7,493,499 B1* 2/2009 Deaver et al. 713/193

7,711,647 B2* 5/2010 Gunaseelan et al. 705/59

7,908,318 B2* 3/2011 Cameron 709/203
(Continued)

OTHER PUBLICATIONS

“Oracle Communications Order and Serivce Management Version
6.3” Administration guide First Edt. Sep. 2007.*

(Continued)

Primary Examiner — Traci Casler
(74) Attorney, Agent, or Firm — Trellis IP Law Group,
PC

(57) ABSTRACT

Particular embodiments generally relate to the orchestration
of an order fulfillment business process using effectivity
dates and versioning. In one embodiment, a plurality of
services in the order fulfillment business process are pro-
vided. A definition of a business process including one or
more services is received from an interface. The one or more
services may be defined in steps to be performed in the order
fulfillment business process. An effectivity date associated
with the definition is also received from the interface. For
example, the effectivity date may be associated with the
business process or individual steps in the business process
and may specify a period of time during which the process
or step can be used. The effectivity dates and versioning may
then be enforced at run-time.

17 Claims, 6 Drawing Sheets

800

610" modeled
the data table

81z table

Gopy the metadata to a runtime

Yes

Do not invoke
executable process

820 @
622
Do not Invoke service

Yes. 624 No
e

US 9,466,037 B2

Page 2
(56) References Cited 2010/0070331 Al* 3/2010 Koegler et al.cc.co..... 705/9
2011/0032898 Al1* 2/2011 Kazmi et al. 370/329
U.S. PATENT DOCUMENTS
7,926,078 B2* 4/2011 Arsenault et al. 725/89 OTHER PUBLICATIONS
7,962,424 B1* 6/2011 Colosso et al. . 380/201 —— - . —
2002/0026304 Al* 2/2002 Savage et al. .. 705134 Oracle Application Integration Architecture for Communications
2003/0140126 Al* 7/2003 Budhiraja et al. 709/220 2:0: Release Note; Nov. 2007; 37 pages. _
2004/0024688 Al* 2/2004 Bi et al. 705/37 WS-BPEL Extension for Sub-processes—BPEL-SPE; A Joint
2004/0139176 A1* 7/2004 Farrell et al. wore 709/220 White Paper by IBM and SAP; Sep. 2005; 17 pages.
2006/0206523 Al* 9/2006 Gaurav et al. 707/104.1 Oasis “Web Services business Process Executive Language Version
2007/0016573 Al* 1/2007 Nanavati et al. 707/5 2.0”; Apr. 11, 2007; 264 pages.
2007/0255715 Al* 11/2007 Lietal. 707/10
2008/0015996 Al* 1/2008 Notanicceevrerrns 705/50 * cited by examiner

US 9,466,037 B2

Sheet 1 of 6

Oct. 11, 2016

U.S. Patent

00t

L ‘b4

]

Blepelsiy

il

ssaooud
ssaulsng pajepolp

auibuo
awnuny Rl
Y (
sseoo.d chl
a|qeinoax]
P
oLt ‘
Atelqy |.~
30INIBS
\
901

waysAs uonessayolQ

¢
c0l

aoela)U|

\
JuslQ 201

¢
70l

U.S. Patent Oct. 11, 2016 Sheet 2 of 6 US 9,466,037 B2

Non-configurable Configurable Service
Services Services Subp;%%esses library 106
R Sas2 R [
i
!] i ! SP
! [Check Availability) 5 | | 250-0
| | | —_—
| ! | 1
! (Accounts Receivable) | | (Service) ! SP
| ! | B ! 250-1
|
|
: Invoice ! | (Service) | SP
| !)
| (Gross Operating Profit | | (" Service ! SP
| L D | 250-3
1
I I

Carpet Business Process — Version 2

Carpet Business Process — (effectivity date #1)
Version 1 110-2
01 _____ [

I
' |
| —[A (effectivity date #3)] !
| :
: i
! —[Shipping] :
i |
I SP2 (effectivity date | |
| #4) |
: |

i
i :
: I
| |

Shipping (effectivity
] date #2)

!
|
|
|
1
I
|
|
!
!
|
|
—| SP2] !
[
:
1
i
[

e) O

Fig. 2

U.S. Pa

tent Oct. 11, 2016

Sheet 3 of 6

US 9,466,037 B2

I |
Interface 10 212
i - v i
|
| |
! Non-configurable Configurable Menu !
| Services Sezr\g;es interface i
! t
: I 252 _____ 1{ I | |
| | Shipping 1 Service)| !
| | A) |
| I Lo | | Service Library |
| | (Accounts Receivable | | | (Service ! 106 i
: ' e i |
| | |
| | | | |
: | Invoice 1 (" Service) | |
| | | I
1 | |) C | |
: | : | | :
! | [Gross Operating Profit) : ! :
| | b |
i I o o ___ o _________ i I
| |
| Process level table !
! 216 ™ |
! Process Process Cost of |
! Name Description Class Change Type Status !
218 220 222 224 226
| v Vi v v :
I Carpet Ship and install | Process COC1 Approved for !
Executable, - . - - |
jd Installation carpet Class 1 | Definition production |
processesz I Process Goods and Process cocC2 Approved for !
110 Ju\ services Class 2 | Definition test |
| |
! M 1
| / |
| |
! Step Details !
| Table 200 [
202
J— A .
! Step Step Name T-Type |S-Type Service Task Name !
(|l 10 Ship carpet Shipping CreateShipment | CarpetShipment |||
'1l_20 | Wait for shipped Wait ExecuteWait CarpetShipment ||,
111 30 | Wait for shipped Wait ExecuteWait CarpetShipment ||
: 40 Install carpet ToDo Install CreateToDo Carpetlnstallation :
1| 50 | Wait for complete | Wait ExecuteWait | Carpetlnstallation ||!
{60 Invoice Invoice Createlnvoice | InvoiceforCarpet |||
|_____\ _______ _______? _____ (, ________ e —— y——— |
204 206 208 210 212 214

Fig. 3

US 9,466,037 B2

Sheet 4 of 6

Oct. 11, 2016

U.S. Patent

wm#L

Search[All

[|EE

O »MainMenu MFavorites My Worklist (0)

O_uima:omm ®Help wLogout

Create Orchestration Definition

ElOrchestration Process

*Required
[y — \mmo Description[_ Status New
Process Class[______ M| * Effective Start Date [May 202006] (UTC-08:00) US Pacific Time Costof Changa Typs M|

Status Catalogl M 352" Effective End Date[May 202006] BYUTC-08:00) US Pacific Time [1Replan instantly []Use rollback checkpoint

Process Carpet installation Details

/Steps| Process Parameers| Status Conditions _

Actions~ Viewv Formatv |4 2 % | B | PUnfreeze 0]

Steps | Planning| Change Management

Lead-ime Expression | Next Expecled Task Status | Step Reuse Name _|Rollback Sequence

Rollback Action

Redo After
Rollback

o] I

expresi

Rollback Carpet Process

[I

i

ElStep Install: Details

Step Dependencies —mﬁoo Parameters _

Actionsv | [12¢ | 0

LinelPrevicus Step Pravious Step Name Effectivity dale ~— 356
120 | ScheduleAppt May 30, 2006 [4]
2[130 M|[ShipCarpet L
3 _H =

ﬁ (Save and Close] [Cancel)

FIG. 4

U.S. Patent

Metadata —»

Oct. 11, 2016

302
/

Table
reader

j—"V

Sheet 5 of 6

Runtime
306 M table
|
Y
Step
304/\’ reader
307 J
y
10
[
20 30 40 50
I i 1
Y
60
/
/
/
/
/
/
308/\-— Flow g
sequencer ~
~
~
~

Fig. 5

US 9,466,037 B2

Task layer
310/\’ reader
A
Task
312/\’ invoker
A
Result
314 receiver

U.S. Patent Oct. 11, 2016 Sheet 6 of 6 US 9,466,037 B2

_~| Receive a command to execute
602 an executable process

l '/600

_~| Determine the correct version of
604 the business process

605 Yes
Effectivity date set?
No
Determine metadata for the r
610—"Y modeled business process from |«
the data table Do not invoke f— 608
executable process

4

Copy the metadata to a runtime
table

812"

|

Y

PR Read the runtime table to
614 : . :
determine a service to invoke

616 No
Effectivity date set?
No

622
[_

818—" Invoke service - Do not invoke service

Yes 624 No
More services?

Y

End

Fig. 6

US 9,466,037 B2

1
VERSIONING AND EFFECTIVITY DATES
FOR ORCHESTRATION BUSINESS
PROCESS DESIGN

CROSS REFERENCES TO RELATED
APPLICATIONS

This invention claims priority from U.S. Provisional
Patent application Ser. No. 61/114,276 filed on Nov. 13,
2008 which is hereby incorporated by reference as if set
forth in full in this application.

BACKGROUND

Particular embodiments generally relate to the orchestra-
tion of business processes.

Business enterprises need to effectively model business
processes to compete in a business environment. Business
processes change over time and thus the processes need to
be versioned. Also, business processes are orchestrated over
a long time period and it is often necessary to have multiple
versions of a business process in operation at the same time.
Further, a user may only want a process to be effective on
certain dates.

A business analyst typically models different versions of
the business process. Then, to have the different versions of
the business process translated into executable processes,
the business analyst has to contact an information technol-
ogy (IT) designer. For example, for multiple versions of a
process to be in use at the same time, the IT designer needs
to be explicitly specify the version in the uniform resource
identifier (URI) or partner link in the executable process.
Thus, each time a new version date needs to be added, an IT
designer needs to be contacted. Also, the IT designer needs
to wait until a date that the business analyst wants the
process to run to deploy the business process. Also, the IT
designer must un-deploy the executable process when the
effectivity date becomes invalid. This is inconvenient and
time-consuming.

Currently, it is only possible to create business process
execution language (BPEL) processes in a BPEL editor and
invoke a deployed BPEL process. Because the 1T designer
and the business analysts have different skill sets (the
business analysts are familiar with the business process
being modeled and the IT designer is familiar with the
orchestration language, but not the business process), the
resulting BPEL process developed by the IT designer may
not work as the business analyst imagined. Accordingly,
there may be a wide divide between the originally-conceived
business process model and the implemented model. This is
further magnified when multiple versions of a business
process need to be designed.

SUMMARY

Particular embodiments generally relate to the orchestra-
tion of an order fulfillment business process using effectivity
dates and versioning.

In one embodiment, a plurality of services in the order
fulfillment business process are provided. A definition of a
business process including one or more services is received
from an interface. The one or more services may be modeled
in steps to be performed in the order fulfillment business
process. An effectivity date associated with the definition is
also received from the interface. For example, the effectivity
date may be associated with the business process or indi-

10

15

20

25

30

35

40

45

50

55

60

65

2

vidual steps in the business process and may specify a period
of time during which the process or step can be used.

The definition is then stored in a run-time table, where the
definition includes the effectivity date and/or a version
number. During run-time, metadata for the definition is read
from the run-time table. It is determined if the right version
is being used. Also, it is determined if the effectivity date
associated with the definition is valid. For example, if the
effectivity date was associated with the process as a whole,
then the effectivity date is checked to see if the business
process can be executed. If not, then the business process is
not executed and an error may be returned. If the effectivity
date is valid for the business process, metadata for the
definition may be used to create an executable process
including the one or more steps. Steps in the executable
process may be invoked; however, if an effectivity date is
specified for a step, it is checked to see if the step should be
invoked. The step is not invoked if the effectivity date is not
valid.

A further understanding of the nature and the advantages
of particular embodiments disclosed herein may be realized
by reference of the remaining portions of the specification
and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example of a system for providing an
orchestration process design and authoring environment
according to one embodiment.

FIG. 2 shows an example of business processes that have
been modeled using versioning and effectivity dates accord-
ing to one embodiment.

FIG. 3 depicts an example of an interface according to one
embodiment.

FIG. 4 shows an example of the user interface that can be
used to input effectivity dates and versioning according to
one embodiment.

FIG. 5 describes the run-time operation according to one
embodiment.

FIG. 6 depicts a simplified flowchart of a method for
checking effectivity dates and versioning information
according to one embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

Particular embodiments provide for the versioning and
setting of effectivity dates in the orchestration of an order
fulfillment business process. An effectivity date may be a
specified for a business process or process step that denotes
a period of time during which that business process or
process step can be used. A version may be a different
instance of the same business process.

The versioning and setting of effectivity dates is important
in business process administration because business require-
ments change and instances of business processes can be
active over a relatively long period of time (e.g., weeks).
Business users may want to set effectivity dates at the
process or step level. Particular embodiments provide the
ability for a user to set versioning or effectivity dates using
an interface. This information may be stored in a data table.
Metadata from the data table is then stored in a run-time
table when the business process is executed. At run-time, the
run-time table is read and an executable process is
assembled. For example, a user may have defined a set of
steps in the business process. Services for the set of steps are
assembled into an executable process. The set of steps are
then invoked in a series of steps according to orchestration

US 9,466,037 B2

3

requirements (e.g., branching and conditional rules). When
the run-time table is read, effectivity dates may be checked
to see if the executable process should be run. Also, if the
effectivity date is specified for any step, the effectivity date
is checked to see if the steps should be run. Accordingly,
particular embodiments offer a run-time solution that allows
effectivity dates to be set and checked at run-time. Also, the
versioning of business processes may also be specified by
setting versioning information using the user interface. The
creation of a new version of a business process does not
affect any other executable processes that are running for
different versions of the business process.

The following describes an overall system that may be
used to generate and run an executable process. The effec-
tivity dates and versioning will be described in FIG. 2. The
interface that may be used to abstract the authoring of
executable processes is described in FIG. 3. An interface to
set effectivity dates and versioning is then described in FIG.
4. The run-time environment is described in FIG. 5 and a
method to invoke services at run-time using effectivity dates
and versioning is then described in FIG. 6.

System Overview

Particular embodiments provide a tool that provides a
high degree of abstraction for business process modeling in
an order fulfillment business process. Business processes
may be modeled by users, such as business analysts, and do
not need any coding from an IT designer to have the business
process executed. Users are provided the flexibility to define
business processes in a user interface, such as a web-based
administration user interface. The business process may
identify one or more services that define steps to be per-
formed in the order fulfillment process. A run-time engine
then uses the definition to dynamically invoke the services
based on the definition of the business process.

In the business environment, business users are often
process modelers, not I'T personnel. By providing a web-
based administration environment, the business users may
be able to design the business process. The process defini-
tions may be defined in business terms and not in IT terms.
Particular embodiments allow an administrative environ-
ment outside of a code editor, such as a BPEL editor, for
defining processes using associated services. Users can
configure processes that can be executed at runtime as
executable processes without IT involvement. This allevi-
ates the need for deploying the processes every time a
modification of the business process is needed. The user sets
up the sequence of services on a data table. The modeled
business process is then used to perform an executable
process, which is assembled and executed at run-time. In
one embodiment, ‘run-time’ can be defined as the time when
an order is received for processing. Metadata is assembled
in data run-time table and used to define the executable
process for the business process. The metadata is used to
invoke services in the executable process.

In one example, the services invoked are encapsulated and
reusable. The metadata is used to determine how and when
to invoke services. Also, depending on the metadata, input
arguments are generated and sent to the services to invoke
the service. A common signature is used to send data to
invoke the services. Different input arguments can be for-
mulated for different services used in different executable
processes. The input arguments are formatted in the same
way such that a service can read the different sets of data and
invoke the service. Thus, services can be re-used in different
business processes without the need to be re-coded and
redeployed. Deployment of services indicates the process is
ready to be released for testing or production.

20

30

40

45

4

FIG. 1 depicts an example of a system 100 for providing
an orchestration process design and authoring environment
according to one embodiment. System 100 includes an
orchestration system 102 and a client 104. Although single
instances of orchestration system 102 and client 104 are
provided, it will be understood that multiple instances may
be used. Also, orchestration system 102 and client 104 may
be part of a distributed computing system. That is, functions
described may be distributed among various computing
devices.

Client 104 may be a computing device or set of computing
devices that are configured to allow a business process to be
modeled. Orchestration system 102 orchestrates the invoca-
tion and running of services for an executable process 110
for the business process. Orchestration, as described, may be
the coordination and invoking of services that need to be
performed in the business process.

As used, a business process may be modeled by a user.
The business process is a definition of steps to be performed.
The steps are defined in interface 108. An executable process
is the process that is executed by run-time engine 112. The
executable process includes code that is executed to coor-
dination performing of services.

A service library 106 that includes multiple services that
can be included in a business process. In one embodiment,
a service library 106 includes services that can be performed
in an order fulfillment business process. Order fulfillment
involves processes that are performed to fulfill an order. For
example, an order may be received from an order capture
system. The order may be for a good, service, etc. Different
services may be performed to fulfill the order, such as
shipment, installation, invoicing, etc. The order fulfillment
process may be characterized in these different services. It is
expected for any given order, some or all of these processes
may need to be performed to fulfill the order. Accordingly,
particular embodiments create services for the services that
are expected to be performed in an order fulfillment process.

Services can be non-configurable units and configurable
units. Non-configurable units are services that are built and
provided to customers. The non-configurable units are units
that likely may be used in an order fulfillment process. For
example, it is expected that different services may have to be
performed in the order fulfillment process, such as account
receivable. Accordingly, these services may be modeled
using a language, such as BPEL. Although BPEL is
described, it will be understand that other languages may be
used.

Configurable units are services that are built and defined
by a customer. For example, a wrapper is provided around
a service that is configured by a user. For example, a
customer may want a shipping service that is specific to the
customer’s company. Accordingly, the service performed by
the configurable unit may be defined and built by a customer,
but the wrapper allows runtime engine 112 to invoke the
service automatically. This allows customers to define ser-
vices that are needed for their individual organizations.

The services may be re-used in different business pro-
cesses. The services are encapsulated and configured to
receive a common signature for the service to be performed.
For example, for each business process, different parameters
may be provided (i.e., different products may be ordered for
different prices, etc.). This causes different input arguments
to be inputted into the service. The common signature
defines a data structure that allows the service to be re-used
for different executable processes 110. Thus, the same
deployed service is used to process different input arguments
for the different orders, but different results may be obtained.

US 9,466,037 B2

5

In this way, the order fulfillment process can be abstracted.
Different users can define which services need to be per-
formed without regard to how the processes are coded in an
orchestration language.

Interface 108 may be an administration user interface. For
example, a graphical user interface allows a user to model a
business process at an abstract level. For example, service
library 106 may be provided to client 104. The user may then
use interface 108 to define steps of the business process
using services in service library 106. A user may define a
plurality of steps in the business process. Each step may be
associated with a service in service library 106.

The steps may be stored in a data table, which may
include metadata that may be used by runtime engine 112 to
orchestrate executable process 110. The data table is shown
as being stored in storage 114. It will be understood that the
data table may be stored in any area, such as in client 104,
orchestration system 102, or any other device. The metadata
may be defined by the user, determined from data tables,
and/or orchestration rules. The user defines the sequence in
which the services are to be invoked as well as conditional
or parallel branching that may be required to effect the
business processing rules. When the user selects a service
for a process step, the user also provides additional metadata
that is used to determine how the processing data is to be
executed during the processing of an order at runtime. For
example, conditional or parallel branching is defined.

At runtime, runtime engine 112 receives the metadata
uses it to determine parameters for the orchestration of
executable process 110. Runtime engine 112 uses the param-
eters to determine which steps to perform and when in
executable process 110. For example, runtime engine 112
orchestrates executable process 110 by invoking services in
the series of steps that have been defined by the user. As will
be described in more detail below, parallel and conditional
processing of steps can also be performed. Also, the meta-
data can be used to determine the input arguments used to
invoke the services.

The metadata for the table is read at runtime and services
are invoked, which allows changes to executable process
110 to be performed and realized at runtime automatically.
Runtime engine 112 reads through each step that is defined
and performs the steps. If a change in service is desired, the
user may use interface 108 to add/delete/replace a service.
At run-time, when the table is read, the change may be
automatically performed. By using encapsulated services
that are defined using interface 108, changes can be made to
an executable process 110 and implemented at runtime. For
example, alterations to the metadata during the running of
the process can influence the sequence of steps taken as well
as the input arguments of the individual steps.

Versioning and Effectivity Dates

FIG. 2 shows an example of business processes that have
been modeled using versioning and effectivity dates accord-
ing to one embodiment. As shown, a service library 106
includes services and sub-processes. A user may use inter-
face 108 to select different services and sub-processes to be
included in business processes. As shown, a carpet business
process-version 1 and a carpet business process-version 2
have been designed by a business user. The carpet business
process has two versions although any number of versions
may be generated.

In carpet business process-version 1, the global order
promising (GOP), shipping, sub-process 2 (SP2), and an
invoice services have been included. In contrast, carpet
business process-version 2 includes the service A, shipping,
sub-process 2 (SP2), and sub-process 4 (SP4) services.

10

15

20

25

30

35

40

45

50

55

60

65

6

Versioning allows users to distinguish several business
process flows that are modified. Changes to the business
process flows should not affect already-running executable
processes 110. For example, carpet business process-version
1 may be a running executable process 110. When version 2
is generated, it should not affect the running of version 1.
Use of versioning allows version 2 to be created and run
without affecting the running of version 1.

Effectivity dates may also be specified for the business
processes. For example, version 2 has an effectivity date
associated with it. The date may specify a start date and end
date for a period of validity. Also, the effectivity date does
not need to be a period but may be just a start or end date.
The effectivity date is not limited to an actual date, but may
be dependent on an event or other condition that can be used
to determine when the executable process is valid. For
example, the effectivity date may specify that the executable
process is run until an event occurs. In FIG. 2, the effectivity
date #1 includes a time period in which version 2 is valid.
For example, a business user may only want version 2 to be
used after a specific date. Also, individual steps and/or
sub-processes in the business processes may have effectivity
dates associated with them. For example, the shipping
service step in version 1 has an effectivity date #2. In this
case, version 1 may be a running process but the shipping
step may only be performed during the time period specified
by the effectivity date. Version 2 may also include effectivity
dates #3 and #4 for other service steps.

Use of effectivity dates allow a business user to specify
when a process or steps in a process should no longer be
used. When an executable process becomes invalid, the
process does not need to be un-deployed or removed from
the processing environment because the effectivity dates are
checked at run-time. If the effectivity date is not valid during
run-time, the executable process will not be run. Also,
business processes may be pre-deployed, that is they may be
released before their planned date of use into the system. At
run-time, the executable process will not be run until the
effectivity date is valid. This allows flexibility and control
for a business user. The versioning and effectivity dates are
enforced at run-time and an IT designer does not have to
configure the executable processes for the versioning and
effectivity dates to be effective.

The ability to define business processes is convenient for
a user using a user interface as described in FIG. 3.
Interface

FIG. 2 depicts an example of an interface 108 according
to one embodiment. Process level table 216 summarizes
different business processes that have been modeled. As
shown, the business processes—Carpet Installation and Pro-
cess 1—have been modeled by a user.

In process level table 216, a process name column 218
shows a carpet installation business process and process 1
have been modeled. A description column 220 describes the
process. A process class column 222 describes the class of
the process: A status column 226 is the status of the
executable process. There may be different statuses of
executable processes 110. For example, some business pro-
cesses may be approved for production, approved for test, or
may be new. Production means that the service is approved
for regular business use, approved for test is approved for
testing, and new is a service in development.

A business process in table 216 can be selected and data
table 200 may show the step details for individual business
processes. One business process is entitled Carpet Installa-
tion and a data table 200 of step details shows each service
that has been defined for the Carpet Installation.

US 9,466,037 B2

7

In data table 200, a step column 204 identifies the steps in
the business process. For example, steps 10-60 are provided.
Services for these steps may be performed at runtime. The
steps may be run in sequence from top to bottom (or in any
other order). In this case, a step 10 is performed and when
finished, a step 20 is performed, and so on. Additionally,
although not shown, conditional and parallel steps may also
be defined using interface 108. Conditional steps are steps
that depend on a result occurring (e.g., another step finish-
ing) and parallel steps are performed in parallel. A user
defines whether steps should be conditional or parallel.

Step name column 206 provides a descriptive name for
the steps. For example, ship carpet, wait for shipped, install
carpet, wait for complete, and invoice steps are provided.

A task type column 208 describes what type of task is
being performed. For example, for the ship carpet task, an
external system may perform a shipping task and for the
invoice step, an invoice system may invoice for a bill.

A service column 212 identifies the service associated
with the step. A task name column 214 is the name of the
task. For example, theses tasks have to do with carpet and
are named carpet shipment, carpet installation, and invoice
for carpet. It is possible that if something other than a carpet
is being installed, the task name may be different. For
example, a sink shipment, sink installation, and invoice for
sink may be the names of these tasks.

Users may use interface 108 to generate data table 200. A
user may select services from a menu for service library 106.
For example, a user uses a menu interface 212 to select
services from service library 106. Drop-down menus, drag-
and-drop options, and other visual processes may be used to
define executable process 110. Users are provided with an
orchestration-specific interface that presents the business
process data with suitable validations, rather than being
required to learn the complexities of a multipurpose 1T
development environment. This allows a user to model a
business process in an abstract manner, but have executable
process 110 be generated and executed from the model.

The services in service library 106 may be made up of
non-configurable units and configurable units. For example,
non-configurable units are provided in a column 302 and
configurable units are provided in a column 304. As shown,
services that are non-configurable include shipping,
accounts receivable (AR), invoice, and global order prom-
ising (GOP). Also, configurable units are designated as A, B,
C, and D.

Table 200 is generated as shown in interface 108 using
menu 212. Table 200 is associated with metadata that
describes the services to be performed and any arguments
that are needed to invoke the services.

Example Interface Using Versioning and Effectivity Dates

FIG. 4 shows an example of user interface 108 that can be
used to input effectivity dates and versioning according to
one embodiment. As shown, an effectivity start date 350 and
an effectivity end date 352 may be input by user. The
effectivity start and end date is for the business process
carpet installation. The effectivity start date shows the date
on which the business process may be valid and the effec-
tivity end date shows the date that the business process
becomes invalid.

Steps are shown in a section 354 for the process carpet
installation business process. An effectivity date 356 may
also be provided for each step of the business process. For
example, an effectivity date has been provided for the
ScheduleAppt step. It should be noted that any number of
effectivity dates may be provided for the steps of the
business process.

20

30

40

45

50

55

60

8

A version 358 is used to specify the version number of this
business process. In this case, this is version 1. If the user
wanted to create version 2, version entry box 358 would be
changed to 2.

Accordingly, interface 108 provides an abstract environ-
ment to specify effectivity dates and versioning information.
Information for the versioning and effectivity dates received
from interface 108 may be imported to a data table 200. This
information is used along with information for the steps to
be invoked at run-time to create an executable process. After
defining the business process using interface 108, an execut-
able process may be generated at run-time. The services are
assembled into an executable process as will be described
below.

Run-Time Operation

Once the business process is modeled in interface 108 and
released by setting the process status, runtime engine 112 is
used to orchestrate the invocation of the services. FIG. 3
describes the runtime operation according to one embodi-
ment. A table reader 302 receives metadata from interface
108 defining the business process. Table reader 302 may
copy the data to a runtime table 306 but this is not necessary.

During run-time, a step reader 304 is configured to read
the steps in runtime table 306. Step reader 304 may analyze
the metadata and determine which steps should be executed
and when. For example, step reader 304 checks to see if
parallel or conditional branching is associated with a step.
The metadata is also used to determine input arguments for
the services. The input arguments may be determined from
the metadata, from data in lookup tables, or determined
using rules.

Step reader 304 may assemble executable process 110
using encapsulated services from service 106 and the meta-
data. For example, code for each service that was modeled
in the steps is determined for executable process 110. The
input arguments for each service are also determined. For
example, the metadata is used to determine the input argu-
ments such that the services can process an order for the
business process. Also, any partner links are determined
using the metadata to allow the services to interact with
external systems. Executable process 110 is assembled
based on the definition of steps in the business process.
Because services are re-usable, the same code for a service
can be used for different business processes. However, the
input arguments or partner links may be different. Because
the same code is re-used, automatic assembly of executable
process 110 is provided.

Also, the effectivity dates and versioning information may
be stored as metadata in run-time table 304. When an
executable process is assembled, the effectivity dates may be
checked. If the effectivity date for the executable process is
invalid, then an error may be returned to the user. If the
effectivity date is valid, then running of the executable
process may proceed. If the effectivity dates are set for
process steps as well, only those process steps with effec-
tivity dates are run. Also, the version information is used to
make sure the correct version of an executable process is
being run. Services are assembled into an executable process
110 as shown in 307. As shown in 307, a step 10 may be
performed and then steps 20, 30, 40, and 50 are performed
in parallel. When these steps have been performed, a step 60
is performed.

The versioning may be associated with an executable
process without having associated partner links or an URI
configured in a command. Conventionally, the version needs
to be specified in the partner links or URI for the process.
This requires an IT designer to code and configure the

US 9,466,037 B2

9

executable process for each version. However, particular
embodiments assemble the executable process at run-time
and do not need to include the version in the URI or partner
link. In one embodiment, run-time engine 112 takes the
latest released version of business process unless there is
configured business logic dictating the use of a prior version.

A flow sequencer 308 is used to dynamically invoke the
steps at the appropriate time based on executable process
110. As shown, a step 10 may be performed and then steps
20, 30, 40, and 50 are performed in parallel. When these
steps have been performed, a step 60 is performed. Flow
sequencer 308 may determine relevant input arguments
depending on the content of the metadata received. These
input arguments are then used to invoke a service. For
example, flow sequencer 308 may include a task layer reader
310 that determines a service to invoke. A task invoker 312
then dynamically invokes the service. Any input arguments
are used to invoke the service. In invoking the service, code
for the encapsulated service is executed to coordinate per-
forming of the service. For example, the executed code may
prepare and send a message to an external system to perform
the service.

The service may then be performed and the result is
received at result receiver 314. In one example, if the task is
shipping, then a shipping service generates a message for a
shipping system regarding the shipping of a good. Once the
shipping system ships the good, a message is returned to the
shipping service, which stores the result.

After receiving a result, it is then checked whether further
sequences need to be performed. For example, a while
activity module checks to see whether further services need
to be processed. For example, the process may be returned
to flow sequencer 308 to allow for dynamic invocation of
other steps in the process. Also, the while activity module
may wait until parallel branches are completed.

Accordingly, the information required to invoke the ser-
vices is determined automatically based on the runtime
table. In one example, in BPEL, necessary partner links for
all invocations have been created and are used to invoke the
services. The services represented in the BPEL partner links
are deployed BPEL processes that require no further con-
figuration in order to be used in multiple business process
definitions. When a service is invoked by the runtime
engine, the corresponding partner link is accessed in the
underlying BPEL process. Assembly of a service and modi-
fication of any service take place through the use of the
metadata found in the runtime table and may be managed
through interface 108.

Accordingly, a user can set up the steps in a business
process. Executable process 110 can be automatically
assembled at run-time. The code used in executable process
110 is not generated by the user who set up the business
process. Rather, metadata can be defined and is used to
assemble encapsulated services for executable process 110.

FIG. 6 depicts a simplified flowchart of a method for
checking effectivity dates and versioning information
according to one embodiment. Step 602 receives a command
to execute an executable process. The command may
include versioning information for a business process.

Step 604 determines the correct version of the business
process. For example, a data table for the business process
that was modeled using interface 108 for the correct version
is determined. Step 605 determines if an effectivity date for
the process is set and valid If an effectivity date is set, it is
determined if the effectivity date is valid in step 606. If the
effectivity data is set and not valid or is not set, the process
is not copied to the runtime table and the executable process

10

15

20

25

30

35

40

45

50

55

60

65

10

is not performed in step 608. If the effectivity date is valid,
then the service is copied to the runtime table and invoked
in step 610. A valid effectivity date may be a “from™ date
(i.e., a start date). An end date may or may not be required.
Step 610 determines metadata for the modeled business
process from the data table. Step 612 copies the metadata to
a run-time table. For example, the metadata is used to
assemble an executable process and to invoke services.

Step 614 then reads the run-time table to determine a
service to invoke. Step 616 determines if an effectivity date
for the service is set. If an effectivity date was not set, then
the service is invoked in step 618. If an effectivity date is set,
step 620 determines if the effectivity date is valid. If not, the
service is not invoked in step 622. If the effectivity date is
valid, then the service is invoked in step 618.

Step 624 determines if there are more services to perform.
If so, the process reiterates to determine another service to
invoke in step 610. If not, the process ends.

CONCLUSION

Conventionally, in a BPEL process, different versions
could have been created and deployed by an IT designer.
However, this required an IT designer to deploy the process.
Particular embodiments do not need a process to be
deployed to set a version and/or effectivity date. Particular
embodiments allow an abstract modeling of a business
process that provides the ability to define versions and their
effectivity dates. At run-time, the version and effectivity
dates are read and used in the assembly and execution of an
executable process. The different versions do not need to be
deployed. This allows users to modify business processes
without affecting versions that are running and also allows
the pre-deployment of business processes using effectivity
dates.

Providing versioning and effectivity dates using an
abstract modeling environment allows users to create busi-
ness processes without the involvement of an IT designer.
Multiple versions of a process may be deployed and the
availability of versions may be restricted using effectivity
dates. The user needs to set up the sequence of operations on
a data table and include version and effectivity date speci-
fications. This information is read at run-time and used to
assemble and execute an executable process. By not requir-
ing pre-deployment of different versions prior to run-time,
the lifecycle of modeling a business process and having it
executed is shortened.

Further description of a distributed order orchestration
system is described in U.S. patent application Ser. No.
12/617,698, entitled “DISTRIBUTED ORDER ORCHES-
TRATION” (ORACP0023), filed concurrently and incorpo-
rated by reference for all purposes. Also, further details on
orchestration are described U.S. patent application Ser. No.
12/617,695, entitled “DATA DRIVEN ORCHESTRATION
OF BUSINESS PROCESSES” (ORACP0002) and U.S.
patent application Ser. No. 12/617,696, entitled “REUS-
ABLE BUSINESS SUB-PROCESSES AND RUN-TIME
ASSEMBLY” (ORACP0005), all of which are filed concur-
rently with this application and all of which are incorporated
by reference for all purposes.

Although the description has been described with respect
to particular embodiments thereof, these particular embodi-
ments are merely illustrative, and not restrictive. Although
BPEL is described, it will be understood that other languages
may be used.

Any suitable programming language can be used to
implement the routines of particular embodiments including

US 9,466,037 B2

11

C, C++, Java, assembly language, etc. Different program-
ming techniques can be employed such as procedural or
object oriented. The routines can execute on a single pro-
cessing device or multiple processors. Although the steps,
operations, or computations may be presented in a specific
order, this order may be changed in different particular
embodiments. In some particular embodiments, multiple
steps shown as sequential in this specification can be per-
formed at the same time.

Particular embodiments may be implemented in a com-
puter-readable storage medium for use by or in connection
with the instruction execution system, apparatus, system, or
device. Particular embodiments can be implemented in the
form of control logic in software or hardware or a combi-
nation of both. The control logic, when executed by one or
more processors, may be operable to perform that which is
described in particular embodiments.

Particular embodiments may be implemented by using a
programmed general purpose digital computer, by using
application specific integrated circuits, programmable logic
devices, field programmable gate arrays, optical, chemical,
biological, quantum or nanoengineered systems, compo-
nents and mechanisms may be used. In general, the func-
tions of particular embodiments can be achieved by any
means as is known in the art. Distributed, networked sys-
tems, components, and/or circuits can be used. Communi-
cation, or transfer, of data may be wired, wireless, or by any
other means.

It will also be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in
a more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in
accordance with a particular application. It is also within the
spirit and scope to implement a program or code that can be
stored in a machine-readable medium to permit a computer
to perform any of the methods described above.

As used in the description herein and throughout the
claims that follow, “a”, “an”, and “the” includes plural
references unless the context clearly dictates otherwise.
Also, as used in the description herein and throughout the
claims that follow, the meaning of “in” includes “in” and
“on” unless the context clearly dictates otherwise.

Thus, while particular embodiments have been described
herein, latitudes of modification, various changes, and sub-
stitutions are intended in the foregoing disclosures, and it
will be appreciated that in some instances some features of
particular embodiments will be employed without a corre-
sponding use of other features without departing from the
scope and spirit as set forth. Therefore, many modifications
may be made to adapt a particular situation or material to the
essential scope and spirit.

We claim:

1. A method, performed using a computer networked with
at least one client, an interface to a business process mod-
eling editor distributed between the computer and the client,
and a non-transitory computer readable storage medium in
data communication with the computer, the client, and the
interface, for orchestrating one or more business processes,
the method comprising:

rendering a client orchestration-specific interface receiv-

ing input via the client orchestration-specific interface
to abstractly model and assemble executable business
processes wherein the client-orchestration specific
interface in response to the input define[s], assemble(s],
and orchestrate[s] the executable business processes

10

15

20

25

30

35

40

45

50

55

60

65

12

and one or more services used to effectuate the execut-
able business processes generated in orchestration lan-
guage code;

receiving from the client orchestration specific interface
selection of one or more a common signature[s] used to
invoke the one or more services, wherein the common
signature defines a data structure for reuse of the one or
more services in a plurality of different business pro-
cesses, and wherein the one or more services include
configurable services and non-configurable services
code;

storing, identifiers of the one or more services associated
with multiple sources, selected through the client
orchestration-specific interface, into a run-time table on
the non- transitory computer readable storage medium
to define a sequence of steps of a specified version of
a first business process modeled, in part, separately on
the client;

assigning, using the computer and in response to the input
from the client orchestration-specific interface, a speci-
fied version identifier to the specified version of the first
business process to distinguish the specified version of
the first business process from other versions of the
business process;

assigning, using the computer and in response to the input
from the client orchestration-specific interface, a first
effectivity date to a first selected one of the services of
the specified version of the first business process to
indicate a time period when the first selected one of the
services of the specified version of the first business
process is valid;

assigning, using the computer and in response to use the
input from the client orchestration-specific interface, a
second effectivity date to a second selected one of the
services of the specified version of the first business
process to indicate a time period when the second
selected one of the services of the specified version of
the first business process is valid;

storing the specified version identifier and the first and
second effectivity dates into the run-time table on the
non-transitory computer readable storage medium;

reading, at run-time and using the computer metadata
from a run-time table, based on the selected common
signature and automatically assemble the sequence of
steps and first effectivity date and second effectivity
date of the specified version of the first business
process, and additional process changes received at
run-time;

determining whether the first effectivity date is valid;

determining which of the one or more services have
invalid effectivity dates:

assembling multiple services in the specified version of
the first business process except for services having an
invalid effectivity date into the executable process at
run-time only if the first effectivity date is valid; and

modifying the executable process at run-time based on the
additional process changes and running valid business
process without re-deployment of the executable pro-
cess;

wherein running the executable process assembled from
all services in the specified version of the first business
process does not affect the running of an executable
process assembled from another version of the first
business process assigned a different version identifier.

2. The method of claim 1 where the effectivity date is a

start date or an end date.

US 9,466,037 B2

13

3. The method of claim 1 further comprising:

assigning a same effectivity date to all steps in the

sequence of steps.

4. The method of claim 1 further comprising:

assigning different effectivity dates to all steps in the

sequence of steps.

5. The method of claim 1 further comprising:

assigning effectivity dates to a subset of the steps in the

sequence of steps.
6. The method of claim 1 wherein the effectivity date is
dependent on an event or other condition that determines
when the specified version of the first business process is
valid.
7. The method of claim 1 further comprising configuring
the one or more services to receive and process different
input arguments formatted in accordance with the common
signatures and produce different outputs relative to each of
the different input arguments.
8. The method of claim 1 further comprising:
determining based on predefined effectivity dates and
predefined versions associated with the one or more
business processes, which of the one or more business
processes are deployable prior to a planned date of use;

deploying at least one business process of the one or more
business processes determined deployable prior to the
planned date of use; and

at run-time, in response to both the predefined effectivity

dates and the predefined versions associated with the at
least one business process, assembling and executing
one or more executable processes of the at least one
business process deployed using the orchestration lan-
guage code.

9. The method of claim 1 wherein the client orchestration-
specific interface comprises a web-based user interface
configured to visually model behavior of the executable
business processes based on the user input using the orches-
tration language code to specify both executable processes
and abstract processes.

10. The method of claim 9 wherein the orchestration
language code comprises a business process execution lan-
guage (BPEL).

11. A non-transitory computer readable storage medium
comprising encoded logic for execution by one or more
processors and when executed operable to orchestrate an
order fulfillment business process, the logic operable to;

rendering a client orchestration-specific interface receiv-

ing input via the client orchestration-specific interface
to abstractly model and assemble executable business
processes wherein the client-orchestration-specific
interface in response to the input define[s], assemble(s],
and orchestrate[s] the executable business processes
and one or more services used to effectuate the execut-
able business processes generated in orchestration lan-
guage code;

receiving from the client orchestration specific interface

selection of one or more a common signature[s] used to
invoke the one or more services, wherein the common
signature defines a data structure for reuse of the one or
more services in a plurality of different business pro-
cesses, and wherein the one or more services include
configurable services and non-configurable services
code;

storing, identifiers of the one or more services associated

with multiple sources, selected through the client
orchestration-specific interface, into a run-time table on
the non-transitory computer readable storage medium

10

15

20

25

30

35

40

45

50

55

60

65

14

to define a sequence of steps of a specified version of
a first business process modeled, in part, separately on
the client;
assigning, using the computer and in response to the input
from the client orchestration-specific interface, a speci-
fied version identifier to the specified version of the first
business process to distinguish the specified version of
the first business process from other versions of the
business process;
assigning, using the computer and in response to the input
from the client orchestration-specific interface, a first
effectivity date to a first selected one of the services of
the specified version of the first business process to
indicate a time period when the first selected one of the
services of the specified version of the first business
process is valid;
assigning, using the computer and in response to use the
input from the client orchestration-specific interface, a
second effectivity date to a second selected one of the
services of the specified version of the first business
process to indicate a time period when the second
selected one of the services of the specified version of
the first business process is valid;
storing the specified version identifier and the first and
second effectivity dates into the run-time table on the
non-transitory computer readable storage medium;

reading, at run-time and using the computer metadata
from a run-time table, based on the selected common
signature and automatically assemble the sequence of
steps and first effectivity date and second effectivity
date of the specified version of the first business
process, and additional process changes received at
run-time;

determining whether the first effectivity date is valid;

determining which of the one or more services have

invalid effectivity dates:
assembling multiple services in the specified version of
the first business process except for services having an
invalid effectivity date into the executable process at
run-time only if the first effectivity date is valid; and

modifying the executable process at run-time based on the
additional process changes and running valid business
process without re-deployment of the executable pro-
cess.

12. The computer readable storage medium of claim 11
wherein the logic is operable to determine if the first
effectivity date for the specified version of the first business
process is valid and to dynamically invoke only valid
services based on a determined orchestration sequence.

13. The non-transitory computer readable storage medium
of claim 11 wherein each of the steps has an effectivity date
associated therewith, with the effectivity date for each of the
steps being the same.

14. The non-transitory computer readable storage medium
of claim 11 wherein each of the steps has an effectivity date
associated therewith, with the effectivity date for each of the
steps being different from the effectivity date associated with
remaining steps.

15. The non-transitory computer readable storage medium
of claim 11 wherein the effectivity date comprises a period
of time in which the specified version of the first business
process is valid.

16. The non-transitory computer readable storage medium
of claim 11 wherein a subset of the steps have the effectivity
date assigned thereto.

17. An apparatus configured to orchestrate one or more
business processes, the apparatus comprising:

US 9,466,037 B2

15

one or more processors; a display; and

logic encoded in one or more non-transitory tangible
computer readable media for execution by the one or
more processors and when executed operable to:

rendering a client orchestration-specific interface receiv-
ing input via the client orchestration-specific interface
to abstractly model and assemble executable business
processes wherein the client-orchestration-specific
interface in response to the input define[s], assemble(s],
and orchestrate[s] the executable business processes
and one or more services used to effectuate the execut-
able business processes generated in orchestration lan-
guage code;

receiving from the client orchestration specific interface
selection of one or more a common signature[s] used to
invoke the one or more services, wherein the common
signature defines a data structure for reuse of the one or
more services in a plurality of different business pro-
cesses, and wherein the one or more services include
configurable services and non-configurable services
code;

storing, identifiers of the one or more services associated
with multiple sources, selected through the client
orchestration-specific interface, into a run-time table on
the non-transitory computer readable storage medium
to define a sequence of steps of a specified version of
a first business process modeled, in part, separately on
the client;

assigning, using the computer and in response to the input
from the client orchestration-specific interface, a speci-
fied version identifier to the specified version of the first
business process to distinguish the specified version of
the first business process from other versions of the
business process;

assigning, using the computer and in response to the input
from the client orchestration-specific interface, a first

25

16

effectivity date to a first selected one of the services of
the specified version of the first business process to
indicate a time period when the first selected one of the
services of the specified version of the first business
process is valid;

assigning, using the computer and in response to use the
input from the client orchestration-specific interface, a
second effectivity date to a second selected one of the
services of the specified version of the first business
process to indicate a time period when the second
selected one of the services of the specified version of
the first business process is valid;

storing the specified version identifier and the first and
second effectivity dates into the run-time table on the
non-transitory computer readable storage medium;

reading, at run-time and using the computer metadata
from a run-time table, based on the selected common
signature and automatically assemble the sequence of
steps and first effectivity date and second effectivity
date of the specified version of the first business
process, and additional process changes received at
run-time;

determining whether the first effectivity date is valid;

determining which of the one or more services have
invalid effectivity dates:

assembling multiple services in the specified version of
the first business process except for services having an
invalid effectivity date into the executable process at
run- time only if the first effectivity date is valid; and

modifying the executable process at run-time based on the
additional process changes and running valid business
process without re-deployment of the executable pro-
cess.

